Last updated: 2021-08-16

Checks: 7 0

Knit directory: Turati_NatCancer_2021/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200627) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9254340. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    bulkRNA/
    Ignored:    data/bulk4_counts.rda
    Ignored:    data/bulk4_dds.rda
    Ignored:    data/paper_palette.rda
    Ignored:    data/signatures.rda
    Ignored:    output/deseq2-mini_bulk4_dds.3pts-Treated-vs-Untreated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt1-Treated-vs-Untreated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt12-Treated-vs-Untreated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt13-Treated-vs-Untreated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt2-Acutely treated-vs-Chronically treated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt2-Acutely treated-vs-Never treated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt2-Chronically treated-vs-Never treated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt2-Relapse-vs-Never treated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt2-Treatment withdrawn-vs-Never treated.rds
    Ignored:    output/fgsea_results.RDS
    Ignored:    output/figures/ExtFig5a_pca_3patients.pdf
    Ignored:    output/figures/ExtFig5b_pca_treatment_response.pdf
    Ignored:    output/figures/Fig5C_fgsea_selected_signatures.pdf
    Ignored:    output/figures/ItemS2.pdf
    Ignored:    output/tables/ExtFig5a_bulkRNAseq_data.xlsx
    Ignored:    output/tables/ExtFig5b_bulkRNAseq_data.xlsx

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/bulkRNA-gs_enrichment.Rmd) and HTML (docs/bulkRNA-gs_enrichment.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html c02a9c9 Javier Herrero 2021-08-16 Build site.
Rmd 163c30e Javier Herrero 2021-08-16 Adding Bulk RNA / GSEA page

Introduction

This document presents the Gene Set Analysis for the bulk RNA-seq data in this project.

The analyisis is performed using fGSEA (Sergushichev A (2016). “An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation.” bioRxiv. doi: 10.1101/060012, http://biorxiv.org/content/early/2016/06/20/060012).

We sort the genes by their Wald statistic, as provided by DESeq2.

library(tidyverse)
library(DESeq2)
library(fgsea)
library(DT)

datatable(NULL)
data("signatures")
pathways <- c(signatures[["H"]],
              signatures[["lineages"]][c("ProB", "MLP", "MEP", "HSC",
                                         "GMP", "ETP", "EarlyB", "CMP")])
names(pathways) <- gsub("HALLMARK_", "", names(pathways))
run_fgsea <- function(my_res, pathways) {
  my_res <- my_res[complete.cases(my_res),]
  # Sort by the statistic (Wald statistic is the default in DESeq2)
  my_res <- my_res %>% arrange(stat)
  stat <- my_res$stat
  names(stat) <- my_res$symbol
  
  # Rn fGSEA
  fgseaRes <- fgsea(pathways, stat, nperm=10000)
  
  # Change the e! stable IDs into gene symbols in the leading edge list (col #8)
  print(htmltools::tagList(
    datatable(fgseaRes,
              options = list(dom = 'frtip')
              ) %>%
      formatSignif(columns=c('pval', 'padj', 'ES', 'NES'), digits=3) %>%
      formatStyle(
        'padj',
        target = "row",
        fontWeight = styleInterval(0.05, c('bold', 'normal'))),
    htmltools::tags$br()
  ))

  fgseaRes_sig <- fgseaRes[fgseaRes$padj < 0.05,]
  fgseaRes_sig <- fgseaRes_sig[order(fgseaRes_sig$NES),]
  cat("\n\n")
  grid::grid.newpage()
  plotGseaTable(pathways[fgseaRes_sig$pathway], stat, fgseaRes_sig, gseaParam = 0.4)
  cat("\n\n")

  g <- ggplot(fgseaRes, aes(reorder(pathway, NES), NES)) +
    geom_col(aes(fill=padj<0.05), col = "black") +
    coord_flip() +
    labs(x="Pathway", y="Normalized Enrichment Score",
         title="Hallmarks and signatures") +
    scale_fill_manual(limits = c(T, F), values = c("#999999", "#EEEEEE")) +
    theme_minimal()
  print(g)
  cat("\n\n")
  return(invisible(fgseaRes))
}

Results

fgsea_results <- list()

Treated vs Untreated (PT1 + PT12 + PT13)

bulk_res <- readRDS("output/deseq2-mini_bulk4_dds.3pts-Treated-vs-Untreated.rds")
tag <- "treated_vs_untreated.3pts"

fgsea_results[[tag]] <- run_fgsea(bulk_res, pathways)
Warning in fgsea(pathways, stat, nperm = 10000): There are ties in the preranked stats (0.83% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
Warning in fgsea(pathways, stat, nperm = 10000): There are duplicate gene names,
fgsea may produce unexpected results


Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Treated vs Untreated (PT1)

bulk_res <- readRDS("output/deseq2-mini_bulk4_dds.pt1-Treated-vs-Untreated.rds")
tag <- "treated_vs_untreated.pt1"

fgsea_results[[tag]] <- run_fgsea(bulk_res, pathways)
Warning in fgsea(pathways, stat, nperm = 10000): There are ties in the preranked stats (0.84% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
Warning in fgsea(pathways, stat, nperm = 10000): There are duplicate gene names,
fgsea may produce unexpected results


Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Treated vs Untreated (PT12)

bulk_res <- readRDS("output/deseq2-mini_bulk4_dds.pt12-Treated-vs-Untreated.rds")
tag <- "treated_vs_untreated.pt12"

fgsea_results[[tag]] <- run_fgsea(bulk_res, pathways)
Warning in fgsea(pathways, stat, nperm = 10000): There are ties in the preranked stats (0.86% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
Warning in fgsea(pathways, stat, nperm = 10000): There are duplicate gene names,
fgsea may produce unexpected results


Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Treated vs Untreated (PT13)

bulk_res <- readRDS("output/deseq2-mini_bulk4_dds.pt13-Treated-vs-Untreated.rds")
tag <- "treated_vs_untreated.pt13"

fgsea_results[[tag]] <- run_fgsea(bulk_res, pathways)
Warning in fgsea(pathways, stat, nperm = 10000): There are ties in the preranked stats (1.29% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
Warning in fgsea(pathways, stat, nperm = 10000): There are duplicate gene names,
fgsea may produce unexpected results


Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Acutely treated vs Never treated (PT2)

bulk_res <- readRDS("output/deseq2-mini_bulk4_dds.pt2-Acutely treated-vs-Never treated.rds")
tag <- "acute_vs_never"

fgsea_results[[tag]] <- run_fgsea(bulk_res, pathways)
Warning in fgsea(pathways, stat, nperm = 10000): There are ties in the preranked stats (0.84% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
Warning in fgsea(pathways, stat, nperm = 10000): There are duplicate gene names,
fgsea may produce unexpected results


Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Chronically treated vs Never treated (PT2)

bulk_res <- readRDS("output/deseq2-mini_bulk4_dds.pt2-Chronically treated-vs-Never treated.rds")
tag <- "chronic_vs_never"

fgsea_results[[tag]] <- run_fgsea(bulk_res, pathways)
Warning in fgsea(pathways, stat, nperm = 10000): There are ties in the preranked stats (0.84% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
Warning in fgsea(pathways, stat, nperm = 10000): There are duplicate gene names,
fgsea may produce unexpected results


Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Relapse vs Never treated (PT2)

bulk_res <- readRDS("output/deseq2-mini_bulk4_dds.pt2-Relapse-vs-Never treated.rds")
tag <- "relapse_vs_never"

fgsea_results[[tag]] <- run_fgsea(bulk_res, pathways)
Warning in fgsea(pathways, stat, nperm = 10000): There are ties in the preranked stats (0.84% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
Warning in fgsea(pathways, stat, nperm = 10000): There are duplicate gene names,
fgsea may produce unexpected results


Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Treatment withdrawn vs Never treated (PT2)

bulk_res <- readRDS("output/deseq2-mini_bulk4_dds.pt2-Treatment withdrawn-vs-Never treated.rds")
tag <- "withdrawn_vs_never"

fgsea_results[[tag]] <- run_fgsea(bulk_res, pathways)
Warning in fgsea(pathways, stat, nperm = 10000): There are ties in the preranked stats (0.83% of the list).
The order of those tied genes will be arbitrary, which may produce unexpected results.
Warning in fgsea(pathways, stat, nperm = 10000): There are duplicate gene names,
fgsea may produce unexpected results


Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Summary

saveRDS(fgsea_results, "output/fgsea_results.rds")

fgsea_tibble <- lapply(names(fgsea_results), function(x) {tibble(set = x, fgsea_results[[x]])}) %>%
  transpose() %>% as_tibble() %>% unnest(cols = c(set, `fgsea_results[[x]]`))
barplot_common_mappings <- list(
  geom_col(aes(fill = paste(padj < 0.05, NES < 0)), col = "black"),
  coord_flip(),
  facet_grid(rows = ~ set),
  labs(x="Gene set", y="Normalized Enrichment Score",
       title="Hallmarks and signatures"),
  scale_fill_manual(name = "NES",
                    limits = c("TRUE FALSE", "FALSE FALSE", "FALSE TRUE", "TRUE TRUE"),
                    labels = c("signif, pos", "non-signif, pos", "non-signif, neg", "signif, neg"),
                    values = c(scales::muted("red"),
                               scales::alpha(scales::muted("red"), 0.2),
                               scales::alpha(scales::muted("blue"), 0.2),
                               scales::muted("blue"))),
  geom_hline(yintercept = 0),
  scale_y_continuous(trans = scales::pseudo_log_trans()),
  theme_minimal()
)

Main signatures

fgsea_tibble$set <- factor(fgsea_tibble$set,
                           levels = c("treated_vs_untreated.3pts",
                                      "treated_vs_untreated.pt1",
                                      "treated_vs_untreated.pt12",
                                      "treated_vs_untreated.pt13",
                                      "acute_vs_never",
                                      "chronic_vs_never",
                                      "acute_vs_chronic",
                                      "relapse_vs_never",
                                      "withdrawn_vs_never"))
fgsea_tibble$set_name <- fgsea_tibble$set
levels(fgsea_tibble$set_name)[1] <- "PT1 + PT12 + PT13\ntreated vs untreated"
levels(fgsea_tibble$set_name)[2] <- "PT1\ntreated vs untreated"
levels(fgsea_tibble$set_name)[3] <- "PT12\ntreated vs untreated"
levels(fgsea_tibble$set_name)[4] <- "PT13\ntreated vs untreated"
levels(fgsea_tibble$set_name)[5] <- "PT2\nacute vs untreated"
levels(fgsea_tibble$set_name)[6] <- "PT2\nchronic vs untreated"
levels(fgsea_tibble$set_name)[7] <- "PT2\nacute vs chronic"
levels(fgsea_tibble$set_name)[8] <- "PT2\nrelapse vs untreated"
levels(fgsea_tibble$set_name)[9] <- "PT2\nwithdrawn vs untreated"

g <- ggplot(fgsea_tibble %>%
              filter(set %in% c("treated_vs_untreated.3pts",
                                "acute_vs_never",
                                "chronic_vs_never",
                                "relapse_vs_never",
                                "withdrawn_vs_never")) %>%
              mutate(set = set_name) %>%
              group_by(pathway) %>%
              mutate(mean.NES = mean(NES)) %>%
              mutate(min.padj = min(padj)) %>%
              filter(min.padj < 0.05),
            aes(reorder(pathway, mean.NES), NES)) +
  barplot_common_mappings
print(g)

Version Author Date
c02a9c9 Javier Herrero 2021-08-16

Selected signatures

The next chunk of code saves the Fig5c figure into the output folder
g <- ggplot(fgsea_tibble %>%
              filter(set %in% c("treated_vs_untreated.3pts",
                                "acute_vs_never",
                                "chronic_vs_never",
                                "relapse_vs_never",
                                "withdrawn_vs_never")) %>%
              filter(pathway %in% c("G2M_CHECKPOINT",
                                    "E2F_TARGETS",
                                    "MYC_TARGETS_V1",
                                    # "MYC_TARGETS_V2",
                                    "OXIDATIVE_PHOSPHORYLATION",
                                    "MITOTIC_SPINDLE",
                                    "DNA_REPAIR",
                                    "COMPLEMENT",
                                    "HSC",
                                    "MLP",
                                    "ProB")) %>%
              mutate(set = set_name) %>%
              mutate(pathway = ifelse(pathway == "OXIDATIVE_PHOSPHORYLATION", "OXIDATIVE_   \nPHOSPHORYLATION", pathway)) %>%
              group_by(pathway) %>%
              mutate(mean.NES = mean(NES)) %>%
              mutate(min.padj = min(padj)),
            aes(reorder(pathway, mean.NES), NES)) +
  barplot_common_mappings +
  labs(title = NULL) +
  theme(text = element_text(size = 14))
print(g +
        scale_x_discrete(limits = c(
          "ProB",
          "MLP",
          "HSC",
          "",
          "COMPLEMENT",
          "MITOTIC_SPINDLE",
          "OXIDATIVE_   \nPHOSPHORYLATION",
          "DNA_REPAIR",
          # "MYC_TARGETS_V2",
          "G2M_CHECKPOINT",
          "MYC_TARGETS_V1",
          "E2F_TARGETS"
          )) +
        geom_tile(aes(x = 4, y = 0, width = 0.8, height = Inf), fill = "white", col = NA)
        # geom_vline(xintercept = c(3, 8), col = "white", size = 10)
)

Version Author Date
c02a9c9 Javier Herrero 2021-08-16
ggsave("output/figures/Fig5C_fgsea_selected_signatures.pdf", device = "pdf",
       height = 5, width = 12)

sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] DT_0.13                     fgsea_1.12.0               
 [3] Rcpp_1.0.4                  DESeq2_1.26.0              
 [5] SummarizedExperiment_1.16.1 DelayedArray_0.12.3        
 [7] BiocParallel_1.20.1         matrixStats_0.56.0         
 [9] Biobase_2.46.0              GenomicRanges_1.38.0       
[11] GenomeInfoDb_1.22.0         IRanges_2.20.2             
[13] S4Vectors_0.24.4            BiocGenerics_0.32.0        
[15] forcats_0.5.0               stringr_1.4.0              
[17] dplyr_1.0.0                 purrr_0.3.3                
[19] readr_1.3.1                 tidyr_1.0.2                
[21] tibble_2.1.3                ggplot2_3.3.1              
[23] tidyverse_1.3.0             workflowr_1.6.2            

loaded via a namespace (and not attached):
 [1] colorspace_1.4-1       rprojroot_1.3-2        htmlTable_1.13.3      
 [4] XVector_0.26.0         base64enc_0.1-3        fs_1.3.2              
 [7] rstudioapi_0.11        farver_2.0.3           bit64_0.9-7           
[10] AnnotationDbi_1.48.0   lubridate_1.7.4        xml2_1.2.5            
[13] splines_3.6.3          geneplotter_1.64.0     knitr_1.28            
[16] Formula_1.2-3          jsonlite_1.6.1         broom_0.5.5           
[19] annotate_1.64.0        cluster_2.1.0          dbplyr_1.4.2          
[22] png_0.1-7              compiler_3.6.3         httr_1.4.1            
[25] backports_1.1.5        assertthat_0.2.1       Matrix_1.2-18         
[28] cli_3.0.0              later_1.0.0            acepack_1.4.1         
[31] htmltools_0.5.1.1      tools_3.6.3            gtable_0.3.0          
[34] glue_1.3.2             GenomeInfoDbData_1.2.2 fastmatch_1.1-0       
[37] cellranger_1.1.0       vctrs_0.3.0            nlme_3.1-145          
[40] crosstalk_1.1.0.1      xfun_0.16              rvest_0.3.5           
[43] lifecycle_0.2.0        XML_3.99-0.3           zlibbioc_1.32.0       
[46] scales_1.1.0           hms_0.5.3              promises_1.1.0        
[49] RColorBrewer_1.1-2     yaml_2.2.1             memoise_1.1.0         
[52] gridExtra_2.3          rpart_4.1-15           latticeExtra_0.6-29   
[55] stringi_1.4.6          RSQLite_2.2.0          genefilter_1.68.0     
[58] checkmate_2.0.0        rlang_0.4.11           pkgconfig_2.0.3       
[61] bitops_1.0-6           evaluate_0.14          lattice_0.20-40       
[64] labeling_0.3           htmlwidgets_1.5.1      bit_1.1-15.2          
[67] tidyselect_1.1.0       magrittr_1.5           R6_2.4.1              
[70] generics_0.0.2         Hmisc_4.3-1            DBI_1.1.0             
[73] pillar_1.4.3           haven_2.2.0            whisker_0.4           
[76] foreign_0.8-76         withr_2.4.2            survival_3.1-11       
[79] RCurl_1.98-1.1         nnet_7.3-13            modelr_0.1.6          
[82] crayon_1.3.4           rmarkdown_2.1          jpeg_0.1-8.1          
[85] locfit_1.5-9.1         grid_3.6.3             readxl_1.3.1          
[88] data.table_1.12.8      blob_1.2.1             git2r_0.26.1          
[91] reprex_0.3.0           digest_0.6.25          xtable_1.8-4          
[94] httpuv_1.5.2           munsell_0.5.0         
LS0tCnRpdGxlOiAiQnVsayBSTkEtc2VxIEdlbmUgU2V0IEVucmljaG1lbnQiCm91dHB1dDogd29ya2Zsb3dyOjp3Zmxvd19odG1sCmVkaXRvcl9vcHRpb25zOgogIGNodW5rX291dHB1dF90eXBlOiBpbmxpbmUKLS0tCgojIyBJbnRyb2R1Y3Rpb24KClRoaXMgZG9jdW1lbnQgcHJlc2VudHMgdGhlIEdlbmUgU2V0IEFuYWx5c2lzIGZvciB0aGUgYnVsayBSTkEtc2VxIGRhdGEgaW4gdGhpcyBwcm9qZWN0LgoKVGhlIGFuYWx5aXNpcyBpcyBwZXJmb3JtZWQgdXNpbmcgZkdTRUEgKFNlcmd1c2hpY2hldiBBICgyMDE2KS4g4oCcQW4gYWxnb3JpdGhtIGZvciBmYXN0IHByZXJhbmtlZCBnZW5lIHNldCBlbnJpY2htZW50IGFuYWx5c2lzIHVzaW5nIGN1bXVsYXRpdmUgc3RhdGlzdGljIGNhbGN1bGF0aW9uLuKAnSBiaW9SeGl2LiBkb2k6IDEwLjExMDEvMDYwMDEyLCBodHRwOi8vYmlvcnhpdi5vcmcvY29udGVudC9lYXJseS8yMDE2LzA2LzIwLzA2MDAxMikuCgpXZSBzb3J0IHRoZSBnZW5lcyBieSB0aGVpciBXYWxkIHN0YXRpc3RpYywgYXMgcHJvdmlkZWQgYnkgREVTZXEyLgoKYGBge3IsIG1lc3NhZ2UgPSBGQUxTRSwgd2FybmluZyA9IEZBTFNFfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShERVNlcTIpCmxpYnJhcnkoZmdzZWEpCmxpYnJhcnkoRFQpCgpkYXRhdGFibGUoTlVMTCkKYGBgCgpgYGB7ciBnZXRfc2lnbmF0dXJlcywgY2FjaGU9RkFMU0V9CmRhdGEoInNpZ25hdHVyZXMiKQpwYXRod2F5cyA8LSBjKHNpZ25hdHVyZXNbWyJIIl1dLAogICAgICAgICAgICAgIHNpZ25hdHVyZXNbWyJsaW5lYWdlcyJdXVtjKCJQcm9CIiwgIk1MUCIsICJNRVAiLCAiSFNDIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiR01QIiwgIkVUUCIsICJFYXJseUIiLCAiQ01QIildKQpuYW1lcyhwYXRod2F5cykgPC0gZ3N1YigiSEFMTE1BUktfIiwgIiIsIG5hbWVzKHBhdGh3YXlzKSkKYGBgCgoKYGBge3IgcnVuX2Znc2VhX2Z1bmN0aW9uLCByZXN1bHRzID0gImFzaXMiLCBmaWcuaGVpZ2h0ID0gMTAsIHdhcm5pbmdzID0gRkFMU0V9CnJ1bl9mZ3NlYSA8LSBmdW5jdGlvbihteV9yZXMsIHBhdGh3YXlzKSB7CiAgbXlfcmVzIDwtIG15X3Jlc1tjb21wbGV0ZS5jYXNlcyhteV9yZXMpLF0KICAjIFNvcnQgYnkgdGhlIHN0YXRpc3RpYyAoV2FsZCBzdGF0aXN0aWMgaXMgdGhlIGRlZmF1bHQgaW4gREVTZXEyKQogIG15X3JlcyA8LSBteV9yZXMgJT4lIGFycmFuZ2Uoc3RhdCkKICBzdGF0IDwtIG15X3JlcyRzdGF0CiAgbmFtZXMoc3RhdCkgPC0gbXlfcmVzJHN5bWJvbAogIAogICMgUm4gZkdTRUEKICBmZ3NlYVJlcyA8LSBmZ3NlYShwYXRod2F5cywgc3RhdCwgbnBlcm09MTAwMDApCiAgCiAgIyBDaGFuZ2UgdGhlIGUhIHN0YWJsZSBJRHMgaW50byBnZW5lIHN5bWJvbHMgaW4gdGhlIGxlYWRpbmcgZWRnZSBsaXN0IChjb2wgIzgpCiAgcHJpbnQoaHRtbHRvb2xzOjp0YWdMaXN0KAogICAgZGF0YXRhYmxlKGZnc2VhUmVzLAogICAgICAgICAgICAgIG9wdGlvbnMgPSBsaXN0KGRvbSA9ICdmcnRpcCcpCiAgICAgICAgICAgICAgKSAlPiUKICAgICAgZm9ybWF0U2lnbmlmKGNvbHVtbnM9YygncHZhbCcsICdwYWRqJywgJ0VTJywgJ05FUycpLCBkaWdpdHM9MykgJT4lCiAgICAgIGZvcm1hdFN0eWxlKAogICAgICAgICdwYWRqJywKICAgICAgICB0YXJnZXQgPSAicm93IiwKICAgICAgICBmb250V2VpZ2h0ID0gc3R5bGVJbnRlcnZhbCgwLjA1LCBjKCdib2xkJywgJ25vcm1hbCcpKSksCiAgICBodG1sdG9vbHM6OnRhZ3MkYnIoKQogICkpCgogIGZnc2VhUmVzX3NpZyA8LSBmZ3NlYVJlc1tmZ3NlYVJlcyRwYWRqIDwgMC4wNSxdCiAgZmdzZWFSZXNfc2lnIDwtIGZnc2VhUmVzX3NpZ1tvcmRlcihmZ3NlYVJlc19zaWckTkVTKSxdCiAgY2F0KCJcblxuIikKICBncmlkOjpncmlkLm5ld3BhZ2UoKQogIHBsb3RHc2VhVGFibGUocGF0aHdheXNbZmdzZWFSZXNfc2lnJHBhdGh3YXldLCBzdGF0LCBmZ3NlYVJlc19zaWcsIGdzZWFQYXJhbSA9IDAuNCkKICBjYXQoIlxuXG4iKQoKICBnIDwtIGdncGxvdChmZ3NlYVJlcywgYWVzKHJlb3JkZXIocGF0aHdheSwgTkVTKSwgTkVTKSkgKwogICAgZ2VvbV9jb2woYWVzKGZpbGw9cGFkajwwLjA1KSwgY29sID0gImJsYWNrIikgKwogICAgY29vcmRfZmxpcCgpICsKICAgIGxhYnMoeD0iUGF0aHdheSIsIHk9Ik5vcm1hbGl6ZWQgRW5yaWNobWVudCBTY29yZSIsCiAgICAgICAgIHRpdGxlPSJIYWxsbWFya3MgYW5kIHNpZ25hdHVyZXMiKSArCiAgICBzY2FsZV9maWxsX21hbnVhbChsaW1pdHMgPSBjKFQsIEYpLCB2YWx1ZXMgPSBjKCIjOTk5OTk5IiwgIiNFRUVFRUUiKSkgKwogICAgdGhlbWVfbWluaW1hbCgpCiAgcHJpbnQoZykKICBjYXQoIlxuXG4iKQogIHJldHVybihpbnZpc2libGUoZmdzZWFSZXMpKQp9CmBgYAoKIyMgUmVzdWx0cwoKYGBge3J9CmZnc2VhX3Jlc3VsdHMgPC0gbGlzdCgpCmBgYAoKIyMjIFRyZWF0ZWQgdnMgVW50cmVhdGVkIChQVDEgKyBQVDEyICsgUFQxMykKCmBgYHtyIGZnc2VhLnRyZWF0ZWRfdnNfdW50cmVhdGVkLjNwdHMsIHJlc3VsdHMgPSAiYXNpcyIsIGZpZy5oZWlnaHQgPSAxMCwgd2FybmluZ3MgPSBGQUxTRX0KYnVsa19yZXMgPC0gcmVhZFJEUygib3V0cHV0L2Rlc2VxMi1taW5pX2J1bGs0X2Rkcy4zcHRzLVRyZWF0ZWQtdnMtVW50cmVhdGVkLnJkcyIpCnRhZyA8LSAidHJlYXRlZF92c191bnRyZWF0ZWQuM3B0cyIKCmZnc2VhX3Jlc3VsdHNbW3RhZ11dIDwtIHJ1bl9mZ3NlYShidWxrX3JlcywgcGF0aHdheXMpCmBgYAoKIyMjIFRyZWF0ZWQgdnMgVW50cmVhdGVkIChQVDEpCgpgYGB7ciBmZ3NlYS50cmVhdGVkX3ZzX3VudHJlYXRlZC5wdDEsIHJlc3VsdHMgPSAiYXNpcyIsIGZpZy5oZWlnaHQgPSAxMCwgd2FybmluZ3MgPSBGQUxTRX0KYnVsa19yZXMgPC0gcmVhZFJEUygib3V0cHV0L2Rlc2VxMi1taW5pX2J1bGs0X2Rkcy5wdDEtVHJlYXRlZC12cy1VbnRyZWF0ZWQucmRzIikKdGFnIDwtICJ0cmVhdGVkX3ZzX3VudHJlYXRlZC5wdDEiCgpmZ3NlYV9yZXN1bHRzW1t0YWddXSA8LSBydW5fZmdzZWEoYnVsa19yZXMsIHBhdGh3YXlzKQpgYGAKCiMjIyBUcmVhdGVkIHZzIFVudHJlYXRlZCAoUFQxMikKCmBgYHtyIGZnc2VhLnRyZWF0ZWRfdnNfdW50cmVhdGVkLnB0MTIsIHJlc3VsdHMgPSAiYXNpcyIsIGZpZy5oZWlnaHQgPSAxMCwgd2FybmluZ3MgPSBGQUxTRX0KYnVsa19yZXMgPC0gcmVhZFJEUygib3V0cHV0L2Rlc2VxMi1taW5pX2J1bGs0X2Rkcy5wdDEyLVRyZWF0ZWQtdnMtVW50cmVhdGVkLnJkcyIpCnRhZyA8LSAidHJlYXRlZF92c191bnRyZWF0ZWQucHQxMiIKCmZnc2VhX3Jlc3VsdHNbW3RhZ11dIDwtIHJ1bl9mZ3NlYShidWxrX3JlcywgcGF0aHdheXMpCmBgYAoKIyMjIFRyZWF0ZWQgdnMgVW50cmVhdGVkIChQVDEzKQoKYGBge3IgZmdzZWEudHJlYXRlZF92c191bnRyZWF0ZWQucHQxMywgcmVzdWx0cyA9ICJhc2lzIiwgZmlnLmhlaWdodCA9IDEwLCB3YXJuaW5ncyA9IEZBTFNFfQpidWxrX3JlcyA8LSByZWFkUkRTKCJvdXRwdXQvZGVzZXEyLW1pbmlfYnVsazRfZGRzLnB0MTMtVHJlYXRlZC12cy1VbnRyZWF0ZWQucmRzIikKdGFnIDwtICJ0cmVhdGVkX3ZzX3VudHJlYXRlZC5wdDEzIgoKZmdzZWFfcmVzdWx0c1tbdGFnXV0gPC0gcnVuX2Znc2VhKGJ1bGtfcmVzLCBwYXRod2F5cykKYGBgCgojIyMgQWN1dGVseSB0cmVhdGVkIHZzIE5ldmVyIHRyZWF0ZWQgKFBUMikKCmBgYHtyIGZnc2VhLnRyZWF0bWVudF9yZXNwb25zZS5hY3V0ZWx5X3RyZWF0ZWRfdnNfdW50cmVhdGVkLCByZXN1bHRzID0gImFzaXMiLCBmaWcuaGVpZ2h0ID0gMTAsIHdhcm5pbmdzID0gRkFMU0V9CmJ1bGtfcmVzIDwtIHJlYWRSRFMoIm91dHB1dC9kZXNlcTItbWluaV9idWxrNF9kZHMucHQyLUFjdXRlbHkgdHJlYXRlZC12cy1OZXZlciB0cmVhdGVkLnJkcyIpCnRhZyA8LSAiYWN1dGVfdnNfbmV2ZXIiCgpmZ3NlYV9yZXN1bHRzW1t0YWddXSA8LSBydW5fZmdzZWEoYnVsa19yZXMsIHBhdGh3YXlzKQpgYGAKCiMjIyBDaHJvbmljYWxseSB0cmVhdGVkIHZzIE5ldmVyIHRyZWF0ZWQgKFBUMikKCmBgYHtyIGZnc2VhLnRyZWF0bWVudF9yZXNwb25zZS5jaHJvbmljYWxseV90cmVhdGVkX3ZzX3VudHJlYXRlZCwgcmVzdWx0cyA9ICJhc2lzIiwgZmlnLmhlaWdodCA9IDEwLCB3YXJuaW5ncyA9IEZBTFNFfQpidWxrX3JlcyA8LSByZWFkUkRTKCJvdXRwdXQvZGVzZXEyLW1pbmlfYnVsazRfZGRzLnB0Mi1DaHJvbmljYWxseSB0cmVhdGVkLXZzLU5ldmVyIHRyZWF0ZWQucmRzIikKdGFnIDwtICJjaHJvbmljX3ZzX25ldmVyIgoKZmdzZWFfcmVzdWx0c1tbdGFnXV0gPC0gcnVuX2Znc2VhKGJ1bGtfcmVzLCBwYXRod2F5cykKYGBgCgojIyMgUmVsYXBzZSB2cyBOZXZlciB0cmVhdGVkIChQVDIpCgpgYGB7ciBmZ3NlYS50cmVhdG1lbnRfcmVzcG9uc2UucmVsYXBzZV92c191bnRyZWF0ZWQsIHJlc3VsdHMgPSAiYXNpcyIsIGZpZy5oZWlnaHQgPSAxMCwgd2FybmluZ3MgPSBGQUxTRX0KYnVsa19yZXMgPC0gcmVhZFJEUygib3V0cHV0L2Rlc2VxMi1taW5pX2J1bGs0X2Rkcy5wdDItUmVsYXBzZS12cy1OZXZlciB0cmVhdGVkLnJkcyIpCnRhZyA8LSAicmVsYXBzZV92c19uZXZlciIKCmZnc2VhX3Jlc3VsdHNbW3RhZ11dIDwtIHJ1bl9mZ3NlYShidWxrX3JlcywgcGF0aHdheXMpCmBgYAoKIyMjIFRyZWF0bWVudCB3aXRoZHJhd24gdnMgTmV2ZXIgdHJlYXRlZCAoUFQyKQoKYGBge3IgZmdzZWEudHJlYXRtZW50X3Jlc3BvbnNlLnRyZWF0bWVudF93aXRoZHJhd25fdnNfdW50cmVhdGVkLCByZXN1bHRzID0gImFzaXMiLCBmaWcuaGVpZ2h0ID0gMTAsIHdhcm5pbmdzID0gRkFMU0V9CmJ1bGtfcmVzIDwtIHJlYWRSRFMoIm91dHB1dC9kZXNlcTItbWluaV9idWxrNF9kZHMucHQyLVRyZWF0bWVudCB3aXRoZHJhd24tdnMtTmV2ZXIgdHJlYXRlZC5yZHMiKQp0YWcgPC0gIndpdGhkcmF3bl92c19uZXZlciIKCmZnc2VhX3Jlc3VsdHNbW3RhZ11dIDwtIHJ1bl9mZ3NlYShidWxrX3JlcywgcGF0aHdheXMpCmBgYAoKCiMjIFN1bW1hcnkKCmBgYHtyIHNhdmVfcmVzdWx0c30Kc2F2ZVJEUyhmZ3NlYV9yZXN1bHRzLCAib3V0cHV0L2Znc2VhX3Jlc3VsdHMucmRzIikKCmZnc2VhX3RpYmJsZSA8LSBsYXBwbHkobmFtZXMoZmdzZWFfcmVzdWx0cyksIGZ1bmN0aW9uKHgpIHt0aWJibGUoc2V0ID0geCwgZmdzZWFfcmVzdWx0c1tbeF1dKX0pICU+JQogIHRyYW5zcG9zZSgpICU+JSBhc190aWJibGUoKSAlPiUgdW5uZXN0KGNvbHMgPSBjKHNldCwgYGZnc2VhX3Jlc3VsdHNbW3hdXWApKQpgYGAKCgpgYGB7ciBiYXJwbG90cy5jb21tb25fbWFwcGluZ3N9CmJhcnBsb3RfY29tbW9uX21hcHBpbmdzIDwtIGxpc3QoCiAgZ2VvbV9jb2woYWVzKGZpbGwgPSBwYXN0ZShwYWRqIDwgMC4wNSwgTkVTIDwgMCkpLCBjb2wgPSAiYmxhY2siKSwKICBjb29yZF9mbGlwKCksCiAgZmFjZXRfZ3JpZChyb3dzID0gfiBzZXQpLAogIGxhYnMoeD0iR2VuZSBzZXQiLCB5PSJOb3JtYWxpemVkIEVucmljaG1lbnQgU2NvcmUiLAogICAgICAgdGl0bGU9IkhhbGxtYXJrcyBhbmQgc2lnbmF0dXJlcyIpLAogIHNjYWxlX2ZpbGxfbWFudWFsKG5hbWUgPSAiTkVTIiwKICAgICAgICAgICAgICAgICAgICBsaW1pdHMgPSBjKCJUUlVFIEZBTFNFIiwgIkZBTFNFIEZBTFNFIiwgIkZBTFNFIFRSVUUiLCAiVFJVRSBUUlVFIiksCiAgICAgICAgICAgICAgICAgICAgbGFiZWxzID0gYygic2lnbmlmLCBwb3MiLCAibm9uLXNpZ25pZiwgcG9zIiwgIm5vbi1zaWduaWYsIG5lZyIsICJzaWduaWYsIG5lZyIpLAogICAgICAgICAgICAgICAgICAgIHZhbHVlcyA9IGMoc2NhbGVzOjptdXRlZCgicmVkIiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzY2FsZXM6OmFscGhhKHNjYWxlczo6bXV0ZWQoInJlZCIpLCAwLjIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2NhbGVzOjphbHBoYShzY2FsZXM6Om11dGVkKCJibHVlIiksIDAuMiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzY2FsZXM6Om11dGVkKCJibHVlIikpKSwKICBnZW9tX2hsaW5lKHlpbnRlcmNlcHQgPSAwKSwKICBzY2FsZV95X2NvbnRpbnVvdXModHJhbnMgPSBzY2FsZXM6OnBzZXVkb19sb2dfdHJhbnMoKSksCiAgdGhlbWVfbWluaW1hbCgpCikKYGBgCgojIyMgTWFpbiBzaWduYXR1cmVzCgpgYGB7ciBiYXJwbG90cy5tYWluX3NpZ25hdHVyZXMsIGZpZy5oZWlnaHQgPSAxMiwgZmlnLndpZHRoID0gMTV9CmZnc2VhX3RpYmJsZSRzZXQgPC0gZmFjdG9yKGZnc2VhX3RpYmJsZSRzZXQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGxldmVscyA9IGMoInRyZWF0ZWRfdnNfdW50cmVhdGVkLjNwdHMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJ0cmVhdGVkX3ZzX3VudHJlYXRlZC5wdDEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJ0cmVhdGVkX3ZzX3VudHJlYXRlZC5wdDEyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAidHJlYXRlZF92c191bnRyZWF0ZWQucHQxMyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImFjdXRlX3ZzX25ldmVyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiY2hyb25pY192c19uZXZlciIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImFjdXRlX3ZzX2Nocm9uaWMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJyZWxhcHNlX3ZzX25ldmVyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAid2l0aGRyYXduX3ZzX25ldmVyIikpCmZnc2VhX3RpYmJsZSRzZXRfbmFtZSA8LSBmZ3NlYV90aWJibGUkc2V0CmxldmVscyhmZ3NlYV90aWJibGUkc2V0X25hbWUpWzFdIDwtICJQVDEgKyBQVDEyICsgUFQxM1xudHJlYXRlZCB2cyB1bnRyZWF0ZWQiCmxldmVscyhmZ3NlYV90aWJibGUkc2V0X25hbWUpWzJdIDwtICJQVDFcbnRyZWF0ZWQgdnMgdW50cmVhdGVkIgpsZXZlbHMoZmdzZWFfdGliYmxlJHNldF9uYW1lKVszXSA8LSAiUFQxMlxudHJlYXRlZCB2cyB1bnRyZWF0ZWQiCmxldmVscyhmZ3NlYV90aWJibGUkc2V0X25hbWUpWzRdIDwtICJQVDEzXG50cmVhdGVkIHZzIHVudHJlYXRlZCIKbGV2ZWxzKGZnc2VhX3RpYmJsZSRzZXRfbmFtZSlbNV0gPC0gIlBUMlxuYWN1dGUgdnMgdW50cmVhdGVkIgpsZXZlbHMoZmdzZWFfdGliYmxlJHNldF9uYW1lKVs2XSA8LSAiUFQyXG5jaHJvbmljIHZzIHVudHJlYXRlZCIKbGV2ZWxzKGZnc2VhX3RpYmJsZSRzZXRfbmFtZSlbN10gPC0gIlBUMlxuYWN1dGUgdnMgY2hyb25pYyIKbGV2ZWxzKGZnc2VhX3RpYmJsZSRzZXRfbmFtZSlbOF0gPC0gIlBUMlxucmVsYXBzZSB2cyB1bnRyZWF0ZWQiCmxldmVscyhmZ3NlYV90aWJibGUkc2V0X25hbWUpWzldIDwtICJQVDJcbndpdGhkcmF3biB2cyB1bnRyZWF0ZWQiCgpnIDwtIGdncGxvdChmZ3NlYV90aWJibGUgJT4lCiAgICAgICAgICAgICAgZmlsdGVyKHNldCAlaW4lIGMoInRyZWF0ZWRfdnNfdW50cmVhdGVkLjNwdHMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJhY3V0ZV92c19uZXZlciIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImNocm9uaWNfdnNfbmV2ZXIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJyZWxhcHNlX3ZzX25ldmVyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAid2l0aGRyYXduX3ZzX25ldmVyIikpICU+JQogICAgICAgICAgICAgIG11dGF0ZShzZXQgPSBzZXRfbmFtZSkgJT4lCiAgICAgICAgICAgICAgZ3JvdXBfYnkocGF0aHdheSkgJT4lCiAgICAgICAgICAgICAgbXV0YXRlKG1lYW4uTkVTID0gbWVhbihORVMpKSAlPiUKICAgICAgICAgICAgICBtdXRhdGUobWluLnBhZGogPSBtaW4ocGFkaikpICU+JQogICAgICAgICAgICAgIGZpbHRlcihtaW4ucGFkaiA8IDAuMDUpLAogICAgICAgICAgICBhZXMocmVvcmRlcihwYXRod2F5LCBtZWFuLk5FUyksIE5FUykpICsKICBiYXJwbG90X2NvbW1vbl9tYXBwaW5ncwpwcmludChnKQpgYGAKCiMjIyBTZWxlY3RlZCBzaWduYXR1cmVzCgo8ZGl2IGNsYXNzPSJhbGVydCBhbGVydC1pbmZvIj5UaGUgbmV4dCBjaHVuayBvZiBjb2RlIHNhdmVzIHRoZSBGaWc1YyBmaWd1cmUgaW50byB0aGUgYG91dHB1dGAgZm9sZGVyPC9kaXY+CgpgYGB7ciBiYXJwbG90cy5zZWxlY3RlZF9zaWduYXR1cmVzLCBmaWcuaGVpZ2h0ID0gNSwgZmlnLndpZHRoID0gMTJ9CmcgPC0gZ2dwbG90KGZnc2VhX3RpYmJsZSAlPiUKICAgICAgICAgICAgICBmaWx0ZXIoc2V0ICVpbiUgYygidHJlYXRlZF92c191bnRyZWF0ZWQuM3B0cyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgImFjdXRlX3ZzX25ldmVyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiY2hyb25pY192c19uZXZlciIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgInJlbGFwc2VfdnNfbmV2ZXIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJ3aXRoZHJhd25fdnNfbmV2ZXIiKSkgJT4lCiAgICAgICAgICAgICAgZmlsdGVyKHBhdGh3YXkgJWluJSBjKCJHMk1fQ0hFQ0tQT0lOVCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJFMkZfVEFSR0VUUyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJNWUNfVEFSR0VUU19WMSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgIk1ZQ19UQVJHRVRTX1YyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIk9YSURBVElWRV9QSE9TUEhPUllMQVRJT04iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiTUlUT1RJQ19TUElORExFIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIkROQV9SRVBBSVIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiQ09NUExFTUVOVCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJIU0MiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiTUxQIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlByb0IiKSkgJT4lCiAgICAgICAgICAgICAgbXV0YXRlKHNldCA9IHNldF9uYW1lKSAlPiUKICAgICAgICAgICAgICBtdXRhdGUocGF0aHdheSA9IGlmZWxzZShwYXRod2F5ID09ICJPWElEQVRJVkVfUEhPU1BIT1JZTEFUSU9OIiwgIk9YSURBVElWRV8gICBcblBIT1NQSE9SWUxBVElPTiIsIHBhdGh3YXkpKSAlPiUKICAgICAgICAgICAgICBncm91cF9ieShwYXRod2F5KSAlPiUKICAgICAgICAgICAgICBtdXRhdGUobWVhbi5ORVMgPSBtZWFuKE5FUykpICU+JQogICAgICAgICAgICAgIG11dGF0ZShtaW4ucGFkaiA9IG1pbihwYWRqKSksCiAgICAgICAgICAgIGFlcyhyZW9yZGVyKHBhdGh3YXksIG1lYW4uTkVTKSwgTkVTKSkgKwogIGJhcnBsb3RfY29tbW9uX21hcHBpbmdzICsKICBsYWJzKHRpdGxlID0gTlVMTCkgKwogIHRoZW1lKHRleHQgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDE0KSkKcHJpbnQoZyArCiAgICAgICAgc2NhbGVfeF9kaXNjcmV0ZShsaW1pdHMgPSBjKAogICAgICAgICAgIlByb0IiLAogICAgICAgICAgIk1MUCIsCiAgICAgICAgICAiSFNDIiwKICAgICAgICAgICIiLAogICAgICAgICAgIkNPTVBMRU1FTlQiLAogICAgICAgICAgIk1JVE9USUNfU1BJTkRMRSIsCiAgICAgICAgICAiT1hJREFUSVZFXyAgIFxuUEhPU1BIT1JZTEFUSU9OIiwKICAgICAgICAgICJETkFfUkVQQUlSIiwKICAgICAgICAgICMgIk1ZQ19UQVJHRVRTX1YyIiwKICAgICAgICAgICJHMk1fQ0hFQ0tQT0lOVCIsCiAgICAgICAgICAiTVlDX1RBUkdFVFNfVjEiLAogICAgICAgICAgIkUyRl9UQVJHRVRTIgogICAgICAgICAgKSkgKwogICAgICAgIGdlb21fdGlsZShhZXMoeCA9IDQsIHkgPSAwLCB3aWR0aCA9IDAuOCwgaGVpZ2h0ID0gSW5mKSwgZmlsbCA9ICJ3aGl0ZSIsIGNvbCA9IE5BKQogICAgICAgICMgZ2VvbV92bGluZSh4aW50ZXJjZXB0ID0gYygzLCA4KSwgY29sID0gIndoaXRlIiwgc2l6ZSA9IDEwKQopCgpnZ3NhdmUoIm91dHB1dC9maWd1cmVzL0ZpZzVDX2Znc2VhX3NlbGVjdGVkX3NpZ25hdHVyZXMucGRmIiwgZGV2aWNlID0gInBkZiIsCiAgICAgICBoZWlnaHQgPSA1LCB3aWR0aCA9IDEyKQpgYGAKCg==