Last updated: 2021-08-16

Checks: 7 0

Knit directory: Turati_NatCancer_2021/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200627) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9254340. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    bulkRNA/
    Ignored:    data/bulk4_counts.rda
    Ignored:    data/bulk4_dds.rda
    Ignored:    data/paper_palette.rda
    Ignored:    data/signatures.rda
    Ignored:    output/deseq2-mini_bulk4_dds.3pts-Treated-vs-Untreated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt1-Treated-vs-Untreated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt12-Treated-vs-Untreated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt13-Treated-vs-Untreated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt2-Acutely treated-vs-Chronically treated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt2-Acutely treated-vs-Never treated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt2-Chronically treated-vs-Never treated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt2-Relapse-vs-Never treated.rds
    Ignored:    output/deseq2-mini_bulk4_dds.pt2-Treatment withdrawn-vs-Never treated.rds
    Ignored:    output/fgsea_results.RDS
    Ignored:    output/figures/ExtFig5a_pca_3patients.pdf
    Ignored:    output/figures/ExtFig5b_pca_treatment_response.pdf
    Ignored:    output/figures/Fig5C_fgsea_selected_signatures.pdf
    Ignored:    output/figures/ItemS2.pdf
    Ignored:    output/tables/ExtFig5a_bulkRNAseq_data.xlsx
    Ignored:    output/tables/ExtFig5b_bulkRNAseq_data.xlsx

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/data-index.Rmd) and HTML (docs/data-index.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html b6f5b35 Javier Herrero 2021-08-13 Build site.
html 537463a Javier Herrero 2021-08-13 Update site
Rmd 73647b7 Javier Herrero 2021-08-13 Adding the “Data / Ancillary” page
html 73647b7 Javier Herrero 2021-08-13 Adding the “Data / Ancillary” page
Rmd 3b68b3c Javier Herrero 2021-08-13 Adding data / Bulk RNAseq page
html 3b68b3c Javier Herrero 2021-08-13 Adding data / Bulk RNAseq page
Rmd 42e5864 Javier Herrero 2021-08-13 Init workflowr website
html 42e5864 Javier Herrero 2021-08-13 Init workflowr website

Under construction
library(tidyverse)
library(DT)

1. Samples overview

This table show the number of datasets per sample per patient. The numbers correspond to the number of cells or samples after QC.

samples_summary <- read_csv("data-raw/samples_summary.csv", col_types = "cccc")

samples_summary %>%
  pivot_wider(names_from = "Assay", values_from = n_samples, values_fill = list(n_samples = "")) %>%
  select(Patient, Sample, `Bulk RNA`, scRNA, scWGS, EPIC, `Bulk WGS`, `sc Q-PCR`) %>%
  cbind(prev_patient = c("", .$Patient[1:(nrow(.)-1)])) %>%
  mutate(Patient = ifelse(Patient == prev_patient, "", Patient)) %>%
  select(-prev_patient) %>%
  datatable(rownames = F, options = list(pageLength = 100, ordering = F, dom = 't')) %>%
  formatStyle(c('Patient', 'Sample'), fontWeight = "bold") %>%
  formatStyle(2:8, 'Sample', backgroundColor =
                styleEqual(c("Diagnosis", "MRD (G&T)", "Relapse",
                             "PDX untreated", "PDX treated", "PDX withdrawn",
                             "PDX chronically", "PDX acutely", "PDX relapse",
                             "chord blood"),
                           c("#FCE4D6", "#FCE4D6", "#FCE4D6",
                             "#DDEBF7", "#DDEBF7", "#DDEBF7",
                             "#DDEBF7", "#DDEBF7", "#DDEBF7",
                             "#E2EFDA"))) %>%
  formatStyle(3:8, backgroundColor = styleEqual("", "#D9D9D9")) %>%
  formatStyle(1:8, borderColor = "black") %>%
  formatStyle(1:8, "Patient", borderColor = styleEqual("", "#CCCCCC")) %>%
  formatStyle(1, borderLeft = "solid 1px") %>%
  formatStyle(c(1, 2, 8), borderRight = "solid 1px") %>%
  formatStyle(c(3:7), borderRight = "solid 1px #CCCCCC")

2. Bulk RNA-seq

Preprocessing of the bulk RNA-seq data

3. scRNA-seq primaries

Under construction

4. scRNA-seq PDX

Under construction

5. Ancillary data

Gene sets and color palette.


sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] DT_0.13         forcats_0.5.0   stringr_1.4.0   dplyr_1.0.0    
 [5] purrr_0.3.3     readr_1.3.1     tidyr_1.0.2     tibble_2.1.3   
 [9] ggplot2_3.3.1   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.0  xfun_0.16         haven_2.2.0       lattice_0.20-40  
 [5] colorspace_1.4-1  vctrs_0.3.0       generics_0.0.2    htmltools_0.5.1.1
 [9] yaml_2.2.1        base64enc_0.1-3   rlang_0.4.11      later_1.0.0      
[13] pillar_1.4.3      withr_2.4.2       glue_1.3.2        DBI_1.1.0        
[17] dbplyr_1.4.2      modelr_0.1.6      readxl_1.3.1      lifecycle_0.2.0  
[21] munsell_0.5.0     gtable_0.3.0      cellranger_1.1.0  rvest_0.3.5      
[25] htmlwidgets_1.5.1 evaluate_0.14     knitr_1.28        crosstalk_1.1.0.1
[29] httpuv_1.5.2      broom_0.5.5       Rcpp_1.0.4        promises_1.1.0   
[33] backports_1.1.5   scales_1.1.0      jsonlite_1.6.1    fs_1.3.2         
[37] hms_0.5.3         digest_0.6.25     stringi_1.4.6     grid_3.6.3       
[41] rprojroot_1.3-2   cli_3.0.0         tools_3.6.3       magrittr_1.5     
[45] crayon_1.3.4      whisker_0.4       pkgconfig_2.0.3   ellipsis_0.3.0   
[49] xml2_1.2.5        reprex_0.3.0      lubridate_1.7.4   rstudioapi_0.11  
[53] assertthat_0.2.1  rmarkdown_2.1     httr_1.4.1        R6_2.4.1         
[57] nlme_3.1-145      git2r_0.26.1      compiler_3.6.3   
LS0tCnRpdGxlOiAiRGF0YSIKb3V0cHV0OgogIHdvcmtmbG93cjo6d2Zsb3dfaHRtbDoKICAgIHRvYzogZmFsc2UKZWRpdG9yX29wdGlvbnM6CiAgY2h1bmtfb3V0cHV0X3R5cGU6IGNvbnNvbGUKLS0tCgo8ZGl2IGNsYXNzPSJhbGVydCBhbGVydC13YXJuaW5nIj5VbmRlciBjb25zdHJ1Y3Rpb248L2Rpdj4KCmBgYHtyLCBtZXNzYWdlID0gRkFMU0UsIHdhcm5pbmcgPSBGfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShEVCkKYGBgCgojIyMjIDEuIFNhbXBsZXMgb3ZlcnZpZXcKClRoaXMgdGFibGUgc2hvdyB0aGUgbnVtYmVyIG9mIGRhdGFzZXRzIHBlciBzYW1wbGUgcGVyIHBhdGllbnQuIFRoZSBudW1iZXJzIGNvcnJlc3BvbmQgdG8gdGhlIG51bWJlciBvZiBjZWxscyBvciBzYW1wbGVzICoqYWZ0ZXIgUUMqKi4KCmBgYHtyIHNhbXBsZXNfc3VtbWFyeX0Kc2FtcGxlc19zdW1tYXJ5IDwtIHJlYWRfY3N2KCJkYXRhLXJhdy9zYW1wbGVzX3N1bW1hcnkuY3N2IiwgY29sX3R5cGVzID0gImNjY2MiKQoKc2FtcGxlc19zdW1tYXJ5ICU+JQogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSAiQXNzYXkiLCB2YWx1ZXNfZnJvbSA9IG5fc2FtcGxlcywgdmFsdWVzX2ZpbGwgPSBsaXN0KG5fc2FtcGxlcyA9ICIiKSkgJT4lCiAgc2VsZWN0KFBhdGllbnQsIFNhbXBsZSwgYEJ1bGsgUk5BYCwgc2NSTkEsIHNjV0dTLCBFUElDLCBgQnVsayBXR1NgLCBgc2MgUS1QQ1JgKSAlPiUKICBjYmluZChwcmV2X3BhdGllbnQgPSBjKCIiLCAuJFBhdGllbnRbMToobnJvdyguKS0xKV0pKSAlPiUKICBtdXRhdGUoUGF0aWVudCA9IGlmZWxzZShQYXRpZW50ID09IHByZXZfcGF0aWVudCwgIiIsIFBhdGllbnQpKSAlPiUKICBzZWxlY3QoLXByZXZfcGF0aWVudCkgJT4lCiAgZGF0YXRhYmxlKHJvd25hbWVzID0gRiwgb3B0aW9ucyA9IGxpc3QocGFnZUxlbmd0aCA9IDEwMCwgb3JkZXJpbmcgPSBGLCBkb20gPSAndCcpKSAlPiUKICBmb3JtYXRTdHlsZShjKCdQYXRpZW50JywgJ1NhbXBsZScpLCBmb250V2VpZ2h0ID0gImJvbGQiKSAlPiUKICBmb3JtYXRTdHlsZSgyOjgsICdTYW1wbGUnLCBiYWNrZ3JvdW5kQ29sb3IgPQogICAgICAgICAgICAgICAgc3R5bGVFcXVhbChjKCJEaWFnbm9zaXMiLCAiTVJEIChHJlQpIiwgIlJlbGFwc2UiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJQRFggdW50cmVhdGVkIiwgIlBEWCB0cmVhdGVkIiwgIlBEWCB3aXRoZHJhd24iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJQRFggY2hyb25pY2FsbHkiLCAiUERYIGFjdXRlbHkiLCAiUERYIHJlbGFwc2UiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJjaG9yZCBibG9vZCIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICBjKCIjRkNFNEQ2IiwgIiNGQ0U0RDYiLCAiI0ZDRTRENiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIiNEREVCRjciLCAiI0RERUJGNyIsICIjRERFQkY3IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiI0RERUJGNyIsICIjRERFQkY3IiwgIiNEREVCRjciLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICIjRTJFRkRBIikpKSAlPiUKICBmb3JtYXRTdHlsZSgzOjgsIGJhY2tncm91bmRDb2xvciA9IHN0eWxlRXF1YWwoIiIsICIjRDlEOUQ5IikpICU+JQogIGZvcm1hdFN0eWxlKDE6OCwgYm9yZGVyQ29sb3IgPSAiYmxhY2siKSAlPiUKICBmb3JtYXRTdHlsZSgxOjgsICJQYXRpZW50IiwgYm9yZGVyQ29sb3IgPSBzdHlsZUVxdWFsKCIiLCAiI0NDQ0NDQyIpKSAlPiUKICBmb3JtYXRTdHlsZSgxLCBib3JkZXJMZWZ0ID0gInNvbGlkIDFweCIpICU+JQogIGZvcm1hdFN0eWxlKGMoMSwgMiwgOCksIGJvcmRlclJpZ2h0ID0gInNvbGlkIDFweCIpICU+JQogIGZvcm1hdFN0eWxlKGMoMzo3KSwgYm9yZGVyUmlnaHQgPSAic29saWQgMXB4ICNDQ0NDQ0MiKQpgYGAKCgojIyMjIDIuIFtCdWxrIFJOQS1zZXFdKGRhdGEtYnVsa1JOQXNlcS5odG1sKQoKUHJlcHJvY2Vzc2luZyBvZiB0aGUgYnVsayBSTkEtc2VxIGRhdGEKCiMjIyMgMy4gc2NSTkEtc2VxIHByaW1hcmllcwoKKlVuZGVyIGNvbnN0cnVjdGlvbioKCiMjIyMgNC4gc2NSTkEtc2VxIFBEWAoKKlVuZGVyIGNvbnN0cnVjdGlvbioKCiMjIyMgNS4gW0FuY2lsbGFyeSBkYXRhXShkYXRhLWFuY2lsbGFyeS5odG1sKQoKR2VuZSBzZXRzIGFuZCBjb2xvciBwYWxldHRlLgo=